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Abstract—Transient solutions were obtained for a square region of heat conducting semitransparent
material cooling by thermal radiation. The region is in a vacuum environment, so energy is dissipated only
by radiation from within the medium leaving through its boundaries. The effect of heat conduction during
the transient is to partially equalize the internal temperature distribution. As the optical thickness of the
region is increased, the temperature gradients increase near the boundaries and corners, unless heat
conduction is large. The solution procedure must provide accurate temperature distributions in these
regions to prevent error in the calculated radiation losses. Two-dimensional numerical Gaussian integration
is used to obtain the local radiative source term. A finite difference procedure with variable space and time
increments is used to solve the transient energy equation. Variable spacing was used to concentrate grid
points in regions with large temperature gradients.

INTRODUCTION

TRANSIENT thermal processes in semitransparent
materials arise in applications using high temperature
ceramic coatings and components, in processes for
crystal growth by solidification in an outer space
environment, and in observation windows in high
temperature devices. Transient solutions are in the
literature for various one-dimensional situations such
as single and multiple semitransparent plane layers,
and spheres. For multidimensional geometries, how-
ever, very little information exists for transient radi-
ative processes, especially where heat conduction is
included. Results are obtained here for a square
region, although the basic analysis is carried out more
generally for a rectangle.

In a semitransparent material where radiative trans-
port acts simultaneously with heat conduction, the
radiation fluxes depend strongly on the temperature
level. Hence, during a transient calculation, accurate
temperature distributions must be obtained at each
time step or the error in the radiation terms will cause
the results to become considerably in error as time
advances.

For some types of thermal boundary conditions,
approximate analytical methods, such as those
developed from radiative diffusion concepts, do not
yield accurate transient solutions as they cannot deal
with the boundary conditions with sufficient accuracy.
Although the diffusion approximation is valid in the
central portion of an optically thick region, it does
not apply near a boundary, and additional approxi-
mations are needed to deal with the boundary con-
ditions. The extent of the error incurred by using the
approximate boundary conditions is difficult to assess

for situations that have not been examined previously
in detail, such as transient solutions of the type treated
here. In the present case, because the semitransparent
region is cooling in a vacuum environment at a low
temperature, the unknown boundary temperatures
depend on both time and position.

The solution requires two numerical operations.
One is integrating the radiation contribution arising
from the temperature distribution surrounding each
location to obtain the local transient radiative source
distribution within the medium. The second is the
transient solution of the energy equation using this
source distribution. A Gaussian integration method
is used here to evaluate the source function distri-
bution. A finite difference procedure with variable
grid and time increment sizes is used for solving the
energy equation. This approach demonstrates that
numerical procedures can be applied directly to the
exact energy equation and boundary conditions, to
yield accurate transient cooling solutions for com-
bined radiation and conduction when the boundary
temperature distribution is unknown and varies with
time.

For plane layers, many steady-state solutions have
been obtained as reviewed in textbooks such as ref.
[1]. Although transient studies for plane layer geome-
tries are much fewer in number, a variety of situations
has been analyzed for single and multiple layers [2-
10]. In the early 1980s solutions involving radiative
transfer in absorbing-emitting media with non-
uniform temperature distributions advanced con-
siderably from one-dimensional to two- and some
three-dimensional situations. Numerical solutions of
these more difficult multidimensional cases become
feasible as larger and faster computers become avail-
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NOMENCLATURE
Ag aspect ratio of rectangular region, d/b T integrated mean temperature [K]
a absorption coefficient of layer [m™ '} t dimensionless temperature, T/ T,
B, optical length of short side of rectangle, x,y,z rectangular coordinates [m]; X = x/b,
ab Y=y/b 7 =:z/b.
b length of short side of rectangle [m]
. ific he e .
¢ E)icglf?;(lfalt] of radiating medium Greek symbols
. A i lengt
d length of long side of rectangle [m] 1pcrement of length, temperature, or
LJ number of grid points in X and ¥ tme N o
’ e AX,AY grid spacings in X and Y directions
directtons ; . . .
.. o Agp intermediate value in equation (18b)
k thermal conductivity of radiating . . .
. R £m transient emittance of region based on
medium (Wm~'K~'] .
. o instantaneous values of @ and T,
N conduction-radiation parameter, . . "
k/40T? b & emittance for region at uniform
PP temperature
n normal direction . . o
. . N 0 time {s}; angle in cylindrical
] heat loss from entire perimeter for a .
. . 1 coordinates [rad]
unit of axial length z [Wm™ '] . o . s
. density of radiating medium [kgm ~’]
¢.q. local heat fluxes leaving long and short
. = Stefan—Boltzmann constant
sides [Wm™ "] [Wm- 2K
R separation distance in X-Y plane . dimensionless time, (4077 /pc.b)0
R abbreviation for radiation terms in i HPEDIT
energy equation
S, function defined in equation (2) Subscripts
S terms in matrix equation (A1) i initial condition ; the ith X location
T absolute temperature [K] J the jth Y location
T, temperature of surrounding m integrated mean value over region ;
environment [K] based on mean value
T, initial temperature of radiating region n at the nth time increment
K]} ut uniform temperature condition.

able. A transient solution requires more computer
time than a steady solution, since the multi-
dimensional radiative source distribution must be
evaluated at each time step. The references that follow
are almost all for steady conditions. Very little has
been done on multidimensional transient problems,
especially when heat conduction is included.

Steady-state numerical solutions have been carried
out in the literature by a number of techniques, such
as using discrete ordinates [11, 12] and finite elements
[13, 14]. Various expansion and numerical methods
have been used in refs. [15-19]. A few transient solu-
tions for rectangular geometries without heat con-
duction are in refs. [20, 21]. The present analysis used
a finite difference method with implicit forward time
integration, and two-dimensional Gaussian inte-
gration to evaluate the local radiative source term.

A common boundary condition is to specify surface
temperatures. In the present situation the radiating
region is cooling by exposure to a cold environment,
and the surface temperature distribution is an
unknown function of time. The environment is a
vacuum, such as in outer space, and hence there is no
means to remove energy from the surfaces of the
region by convection or conduction. The region is

semitransparent so radiant energy from within the
region passes out through its boundaries. This is vol-
ume emission so there is no radiation emitted from
the surface itself. Energy can be conducted to the
surface, but cannot be radiated exactly from the sur-
face since the surface has no volume. The boundary
condition for the temperature distribution is that the
local temperature gradient normal to each surface is
zero. Heat conduction redistributes energy within the
region, but energy is lost only by radiation.

For some conditions, such as for an optically thick
region, the transient temperature distributions are
quite curved near the boundaries. If the temperatures
near the boundaries and corners are inaccurate, the
radiative loss can be significantly in error. For an
accurate transient solution, the zero temperature
gradient boundary condition that applies for the pre-
sent external conditions must be accurately achieved
by the numerical procedure. Otherwise the solution
will behave as if there is an additional energy loss or
gain at the boundary and this leads to an accumulative
error in the overall heat balance during the transient
cooling calculations. To be able to obtain accurate
temperature distributions near the boundaries for
conditions of transient radiative loss, a finite differ-
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ence procedure was used with a variable increment
size to concentrate grid points in the near boundary
regions.

The temperature distribution of the rectangular
region is initially uniform ; hence, its initial emittance
is for that condition, which was analyzed analyftically
in ref. [22]. At the onset of transient cooling, the
boundary regions cool rapidly. Unless the entire
region is optically thin, this cooling reduces the overall
emittance of the region since much of the radiation
loss is originating from the portion adjacent to the
boundaries which are at a lower temperature than is
characteristic of the region interior. For an initial time
period, the emittance continues to decrease with time.
Then the radiation contribution to the energy ex-
change becomes smaller because the temperature
level has decreased. The magnitude of conduction
relative to radiation increases; this tends to make
the temperature distribution more uniform as the
transient proceeds further. The region emittance then
increases toward its initial value which was for a uni-
form temperature region.

The variation of emittance throughout the transient
depends on the optical thickness of the region, and
on the initial conduction—radiation parameter which
contains the thermal conductivity. For certain con-
ditions, such as an optically thin medium, the tem-
perature distributions tend to be rather uniform
throughout the cntire transient. In this instance the
use of the emittance corresponding to a uniform tem-
perature provides a very good approximation through-
out the transient solution. The results will show the
ranges of parameters for which this is a good approxi-
mation, thus providing a simple prediction method
for the overall behavior.

ANALYSIS

Energy equation and boundary conditions for transient
cooling

A rectangular region, as shown in Fig. 1(a), has
side lengths b and 4. It is long in the z direction so
the thermal behavior is two-dimensional. The region
consists of a gray emitting, absorbing, and non-
scattering medium that is heat conducting. Initially
the region is at uniform temperature 7,. It is then
placed in much cooler surroundings at 7, so that
energy is lost by radiation. The surroundings are a
vacuum so that radiation emerging from within the
region is the only means of energy loss. The sur-
rounding temperature is low enough, 7, « T(x, y, 8),
so that radiation from the surroundings to the region
can be neglected. The rectangular region conducts
heat internally, but because of the vacuum sur-
roundings, there is no mechanism by which heat can
be conducted or convected away from the boundaries.
Hence, the normal derivative of temperature is zero
along the entire boundary.

The transient energy equation has the dimen-
sionless form [17, 18, 20}
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Fic. 1. Two-dimensional emitting, absorbing, and heat con-
ducting rectangular medium. (a) Geometry and coordinate
system. (b} Nomenclature for nonuniform grid.
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Equation (1) expresses that the local change of inter-
nal energy is the result of the local net heat conduction,
local radiant emission, and the gain of energy by radi-
ation from the surrounding medium. S, is one of a
class of S, functions examined in ref. [23] that arise in
two-dimensional radiative transfer

/2
s"(£)=iﬁ et o fdp. ()

As discussed later, a finite difference procedure with
variable increment sizes in space and time is used to
obtain the transient temperature distributions
(X, Y, 7). The initial condition for the region is
#(X, Y,0) = 1. Radiation passes out from within the
volume, but does not originate from the surface itself
(which has no volume). Consequently for all 1, the
boundary conditions for a vacuum environment are,



2582

CtfoX =0for X =0,4,, 0< VY <1,

and

ét/éY =0for Y =0,1, 0<X < A4g.

Local heat fluxes and total energy leaving boundary
The local heat flux leaving the boundary at any time

is obtained by integrating over the volume the energy

that arrives at a position on the boundary from each

volume element. This was done in refs. {15,20] and

gave the local fluxes leaving the long and short sides

in Fig. | as
X, Ap 1
B =p OLOL_Ot“(X', v,7
S,(B,R
x(l—Y/):’(R—OZI)dY’dX/ (3a)
1
qs(Yst) _ AR : 4 ’ ’
O'T,4 _BOL’O Y':ﬂt (XaYvT)
S5(BoR,
% (Ax—X") i(R" )dY dx’ (3b)
where

= (X=X)+ (-1,
Ry = (Ap—X') 2+ (Y—Y")%
The instantaneous rate of energy loss from the
entire boundary per unit length in the z direction is

found by integrating the local fluxes over the four
sides to yield:

This has the dimensionless form

o)
2b+d)oT?

1 g ‘
= 1'+?1.<Uo ql(X,r)dX+£ qs(Y,t)dY]. 4)

The &(z) is the transient overall emittance for the
entire region, based on the instantaneous total energy
loss and the initial temperature.

= &(1)

Local and mean emittance relations
At any time during transient cooling, the mean
temperature is obtained from T(x, y, #) by using,

14 [*
T.(6) = deLOJ‘YVO T(x,y,0)dxdy,

which gives the dimensionless form

T..(0 1 (" ("
()=tm(r)=—vf J HX,Y,1)dxdY. (5
T Ag Jx=0 Jr=0

The instantaneous emittance &,,(#) for the overall
heat loss, based on the instantaneous mean tem-
perature, is obtained from the heat balance,

R. SiEGEL and F. B. MoLLs

00) =2(b+d)e, (0)aT:(0). In dimensionless form,
this gives

& (1) = &(1)/ 1 (7). (6)

As a check on the numerical work, ¢,(0) was also
obtained from the heat balance,

2(b+d)en()aTH(0) = — pe,bd AT, (6)/d0,

that has the dimensionless form

24 1 dt,
(1) = — N 7
() 1+ Ag 1y dt M
Since the time increments are small enough that ¢, (z)
changes only a small amount for each Az, equation
(7) can be integrated analytically over a small interval

from t to 74 At to yield

(ttortAn =~ L : l
en(tto T+ T)_1+AR At| B +AD 20|

®)

This provides another equality to check the con-
sistency of the results from the numerical solution.

Relations for region at spatially uniform temperature

For comparison, transient solution results are
obtained for a rectangular region that always has a
spatially uniform temperature. For this situation, the
emittance is a constant for each optical dimension B,.
It is called ¢, and 1s evaluated at the beginning of each
transient solution where the first set of boundary
heat flux integrations is for an initially uniform
temperature distribution. The ¢, is also obtained
in ref. [22] by another method. By integrating equa-
tion (7) with ¢, = &,

m uat (T) (

Then from Q. (8) = 2(b+d)e, 0T (), the instan-
taneous overall heat loss is expressed in terms of ¢,

and 7 as
31+ Ag -4
=&y (1 + 2' “Z:' Euﬂ’) . (10)

It is evident from equations (9) and (10) that if ¢,
is known, it is very easy to compute the transient mean
temperature and overall heat loss for a region that
always has a spatially uniform temperature. The
results for transient cooling of the actual region that
has a nonuniform temperature distribution can be
conveniently presented as a ratio relative to the uni-
form temperature results. The mean temperature ., (1)
for the actual transient is given relative to that for a
region at spatially uniform and time varying tem-
perature by

1, (1) 3144 173
zr.;:;lu,em):’m‘”(‘ 3 e > - (D

31+4, -
2 7'{7 6m‘L'> . (9)

0u(v)
2b+d)aT?




Finite difference solution

Similarly the instantaneous overall heat loss Q(r) rela-
tive to that for a region always at spatially uniform
temperature is given by

0w _ _ () 3l4+dn V7
- m(>( 34 emr>. (12)

Qul (T’ 6ut) 8ul
Procedure for numerical solution

To shorten the notation while developing the solu-
tion method for equation (1), the radiation terms on
the right-hand side are called R. The equation then
has the form

é{_Na_zt 62t ﬁl
5= Maxz t oy ) RO

By using the trapezoidal rule to integrate over a
small time interval, the local temporal change in ¢ is
expressed in terms of 0¢/0t at successive times by

T+AT 5y AT ot ot
At=In+1_l"=[ &dr ~2|:<ar>n+,+<6r>,,:|.

(14)

The value of R,,, needed for obtaining (37/d1), ., ,
in equation (13) is obtained in terms of R, by the

expansion
~ - OR
R, 1 =R,+ <at>(tn+l L)

The second derivatives in equation (13) can be written
at T+ At as (£ is either X or Y),
ag o

8%t _
5? n+ 1 B
(16)

Substituting equation (13) into (14) and then using
equations (15) and (16), the equation to be solved for
At becomes

| Ar(oR ATN 2 a
7\ ) ax2 tayr) M
2%t 0%t ~

The alternating direction implicit method (ADI)
will be used. A general description is given in ref. [24] ;
the method used here from ref. [25] differs somewhat.
The second derivative operator on At is split into
each of the coordinate directions, and equation (17) is
approximated by

14 A7 (R ATN 1\ |a
2 \ar ) ox?)|°?
8%t 0%t

=A’[N<5X— g

(13)

(15)

0% (t,. —1t,) 0%, 0°Ar, 0%,

e P

) —R""] (18a)
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Ar 92
(1 — 6Y )At (18b)
To move ahead one time increment, equation (18a) is
solved for Ag. This is done by solving along grid
points in the X direction for constant Y values. The
Ag are then used on the right-side of equation (18b)
which is solved for Ar along grid points in the Y
direction for constant X values.

The rectangle has a grid as shown in Fig. 1(b).
There are I and J points in the X and Y directions so
the index ranges are, | <i<7Tand | <j<J. Since
all terms in equation (18) are at the time interval
corresponding to the index n, this subscript will be
omitted ; the i, j subscripts are used to specify the X, Y
location. Thus, the relations in equation (18) are for
obtaining At,; at all grid locations at time 7,. This
gives the temperatures for all X, Y at the new time by
using t,,; = t,+At, at each grid point, 7,j. Using
equation (18a) a sweep is made in the X direction for
each j to obtain the Ag,; for all i. Then using equation
(18b) a sweep is made in the Y direction for each i to
obtain At;;. To obtain the tridiagonal matrix for each
sweep, variable increment sizes AX and AY are used
within the region. The second derivatives are placed
in finite difference form with AX~, AX*, AY", and
AY™ extending in the negative and positive coordinate
directions as in Fig. 1(b)

't 20, 2t
0X2 AXT(AXT+AX") AXTAX-
21,
T ax-(axs +ax) 199
6_21_ 2ti,j+1 2ti.j
Y2 AY*(AY*+AY") AYTAY"
21,
b (19b)

tAY @AY AT

where AX* =X, ,,—X,,, and AX  =X,,—X,_
and similarly for AY.

Equation (19) is inserted into (18) with the result

— 1./

AN A
AX*T(AX* +Ax ) "Prv

At 6R AN A
> o T axtAx- )0
AN

AKX (Ax+AX) NP

—A 2N Ly, (AXTHAX
TONAYT +Ax | AxT T \UAXTAX

) ti‘j

Ly 2N Lijsa
+ AX‘]—'— AYT+AY" |AY"

AY* +AY" L ~
_< AV AY- )"‘f'J’Ar Ry

(20a)
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At

AN Aty
MOAYY+AY | AY?

AY*T +AY" At
- (KY:TAY—') At + -_’jl} = Ap,;. (20b)

Equations (20a) and (20b) are valid for all interior
points 2 € i< I—1,2 <j< J~1. Ateach boundary
there is a zero normal temperature derivative as
explained earlier. Hence equations (20) have special
forms at the boundaries obtained by letting the tem-
perature at a mirror image grid point outside the
boundary be the same as at the first interior grid point
value away from the boundary. Thus, for example, at
i=1, j# 1,J, equation (20a) is modified by letting
the value at a fictitious point i=0, j1,J be
@o; = @2, and by letting AX™ = AX™. This yields at
i=1Lj#1LJ

1 Ac ‘2}?" _;_,AiN A AN A
T\ Ta Ty POV Ay A0

_A _2N— t H J— ZN
= At (AX*)Z( 25— 1.;)+AY++E,?

Lo [AYT +AY" Ty ~
+|:AY* ( Ay ay- )T Ay [TRupe @D
Equations (20a) and (20b) and the boundary con-
dition relations as illustrated by equation (21) are
assembled into the two tridiagonal matrices in the
Appendix. Since R(7) represents the radiation terms

in equation (1), the R/ér needed for the b cocflicients
I

oR

== 4B, [13(X, Y, 1)

ar
B. (4= 1
- =2 J’ j. 2, Y1)
4 X=0 Yy =0

S1(BoR)
R(X,Y,X',Y")

dx’ dY’j|. (22)

The tridiagonal matrices are each solved using the
well-known algorithm in refs. [24,26]. The matrix
(A1) gives a sweep of values across the X direction
for cach value of Y. Then the resulting Ag,, are used
in matrix (A2) to obtain Ay, ; by making a sweep in
the Y direction for each X. These At, which are at each
X, Y are added to the #(X, Y) to advance to the next
time increment.

To evaluate the radiative source term R(z) and
&R/61, that are in the matrix coefficients, an accurate
integration method is required. The S,(B,R) is well
behaved as R — 0, but the 1/R factor makes the inte-
grands of equations (1) and (22) appear to be singular
as the integration variables X', ¥’ approach the grid
point X, Y. The integrands are not singular as is evi-
dent by using cylindrical coordinates R, 8 about X, Y.
The dX dY becomes R dR df and the 1/R is removed.
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However, when using rectangular coordinates for the
purposes of integration, as in the present method, the
apparent singularity must be considered for small R.
For this reason, the integration surrounding each X, ¥
was divided into seven regions, Fig. 2(a). Region 7 is
a small square of width less than one-half the local grid
spacing. This was replaced by a small circle having the
same area as the square, and the integration over region
7 carried out in cylindrical coordinates. This region
provided only a small part of the total double integral,
so this approximation did not yield significant error.
To carry out the integrations, the cross-section was
covered with a grid of unevenly spaced points with
more points near the boundaries where the tem-
perature profiles have the largest curvature. For the
integrations at each t, two-dimensional spline fits were
made of t*(X, ¥,t) and 1*(X, Y, 1), as needed for R(2)
and d R/ét, using IMSL routines BSNAK and BS2IN.
The spline coefficients were used to interpolate values
at locations between grid points as called for by a
two-dimensional integration subroutine. A Gaussian
routine, SQUADI! was used as described in ref. [27].
This uses 16 Gaussian points in each coordinate direc-
tion and was found in an earlier study [20] to provide
excellent agreement with an IMSL Gaussian routine
using more integration points and requiring sig-
nificantly more computing time. By trying various
numbers and sizes of the spatial increments, it was
found that 19 unevenly spaced grid points across cach
direction (illustrated in Fig. 1(b)) gave accurate results
for a square region. The increment size was small
adjacent to the boundaries where four points spaced

—{ § pa—
2 6 4
xN—1 17
\—J—
&
y 1 3

Y

(a)

3 T3

Yh

*
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FiG. 2. Integration regions for evaluating local radiative

source and local fluxes along boundary. (a) Regions for

double integration for radiative source. (b) Regions for
double integration for boundary flux.



Finite difference solution

0.02 apart were used. In the central portion of the
region a spacing of 0.1 was found adequate. A similar
spatial integration procedure with five subregions was
used to determine the local heat fluxes along the
boundary, Fig. 2(b).

To evaluate equation (3), S.(Bo,R) values are
required, and similarly S,(ByR) values are needed
for R(f) defined in equation (13), and for R/t in
equation (22). The S, and S, functions were evaluated
from equation (2) by using IMSL integration routine
QAND, and function tables were prepared. Values of
S, and S, for use in the two-dimensional integration
routine were interpolated from the tables using IMSL
cubic spline routines CSINT and CSVAL.

The calculations were carried out with a CRAY
X-MP computer and required about 1 min per time
increment for a 19 point grid (361 points in the square
region). A variable time increment was used with the
A7 = 0.01 initially, and then gradually increased
through the calculation as the rate of temperature
change decreased. The time increments were such that
t. changed about 0.02 for each time increment after
using a few smaller increments at the beginning of
the transient. About 20 time increments were used to
reach a condition where about 40% of the initial
energy in the region had been dissipated.

RESULTS AND DISCUSSION

Transient temperature distributions

Using the numerical solution procedure, transient
temperature distributions were obtained in a square
region. Typical results are in Fig. 3 for optical side
lengths, B, = 2, 5, and 10, and for the conduction
parameter N = 0, 0.1, and 00, Because of symmetry,
values are given along only one-half of a side or cen-
terline. Parts (a)—(c) give values along the outer bound-
ary, and part (d} along the centerline. When the tran-
sient begins, the hot region is suddenly subjected to a
cold black environment and the outer portions of the
region begin to cool the most rapidly. For finite heat
conduction (N > 0) the conditions of the problem
yield a zero temperature gradient normal to the
boundaries. When B, is fairly small as in Fig. 3(a),
the transient profiles are rather flat as is characteristic
of an optically thin region. When the optical dimen-
sion is increased to 10, Fig. 3(c), the temperature
distribution can be quite curved near the boundary as
N approaches zero. For N = 0.1 the heat conduction
is large enough to provide significant equalization of
the temperature distribution across the region. There
is less equalization early in the transient where the
temperature distributions have been influenced more
by the rapid action of the radiative transfer than by the
slower action of energy diffusion by heat conduction.

The dimensionless temperature distribution is
initially unity. Profiles are shown at four time values
during the transient, corresponding to when approxi-
mately 3, 10, 25, and 40% of the initial energy in
the region has been radiated away. For N = 0.1 the
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boundary temperatures in Fig. 3(a) are above those
for N = 0. Conduction has somewhat equalized the
temperatures over the cross-section thus raising the
temperatures near the boundaries above those for zero
conduction. When B, is increased to 10, Fig. 3(c), the
transient surface temperature distributions without
conduction are more curved, and heat conduction can
then provide a more significant effect in raising the
surface temperatures. This effect of N is shown more
clearly by Fig. 3(d) which shows the temperature dis-
tribution along the centerline of the cross-section for
B, = 10. Heat conduction results in increased tem-
peratures at the boundary and decreased temperatures
in the central region. For B, = 10 the central region
cools much more slowly than the portions adjacent to
the boundary

Transient surface heat fluxes

Figure 4 gives the local heat fluxes leaving through
the boundary of a square region at the same times as
in Fig. 3. The heat flux profiles become more curved
as conduction decreases and the optical dimension of
the region increases. As time advances, the decrease
in temperature throughout the region reduces the
radiative transfer, and the heat flux profiles become
more flat. For B, = 2 the temperature distribution is
already fairly flat when conduction is absent. Hence,
the addition of conduction has little effect on the
temperature profiles, and the resulting heat fluxes in
Fig. 4(a) are practically independent of N. Figure
4(b), for B, = 5, shows a somewhat larger effect of N
on the heat fluxes and the effect increases as the tran-
sient proceeds. For Bj =10, Fig. 4(c), heat con-
duction has a significant effect on the local radiated
fluxes ; results for N = 0.3 are also included. As the
transient proceeds and the temperature level
decreases, thereby reducing the relative importance of
radiation, the curves for N = 0.3 gradually approach
those for N — oo. Since the temperature distribution
is uniform at the initiation of the transient, the numeri-
cal results for the initial surface fluxes were compared
with the analytical solution in ref. [22], the values
agreed to within a few tenths of 1 percent.

Transient mean temperature of square region

With regard to the total amount of energy that has
been radiated away, the transient mean temperature
of the region, 7,,(7) is of interest. This is shown in Fig,
5 for various B, and N. The ordinate is the ratio of
1, (1) to the mean temperature that would be reached
at the same time if the square region always had
1(X, Y,7) independent of X, Y and hence had the
maximum emittance that could exist for the B, of the
region {see equations (9) and {(11)). The ratio is unity
for N — co since the temperature distribution is uni-
form in this instance. For any finite N the rate of heat
loss is smaller than for N — o0 so at any 7 the 1,,(7) is
larger than ¢, ,(7); hence, the ratios in Fig. 5 are
larger than unity. For design purposes the mean tem-
perature 7., (1) for various B, and N can be estimated



2586

-
o

Dimensionless temperature, T(X, 0, T)/T;

Dimensionless temperature, T(X, 0, T)/T;

©

g
[=]

©

R. SIEGEL and F. B.

Dimension-
less
time, T
0
AP TOA A x Sa hn fn T T B e e X S }0 03
o e e TSI
veseeenanent }0.15
/
........... Aptwtetedertr e }0.55
ATttt rd i e o L ot
[ }1.36
/ N
— 0
------- 01
| | | | |

0 0.1 0.2 0.3 04 0.5

Dimensionless position, xb
(a)
Dimension-
less
time, T
0
e - - - - - - -
..................................... }003
g
___________________ |
..... Jo.15
‘{----f— ———rmT )
— et 0.55

1.36

I l | | J
0 01 02 03 04 05

Dimensionless position, x/b
(b)

Dimensionless temperature, T(X, 0, t)/T;

—
<

Dimensionless temperature, T(X, b/2, 1)/T

©

[

~N

-}

5
0

MoLLs

Dimensionless
time, ©

I | | 1

0.1 0.2 03 04
Dimensionless position, b
(c)
Dimensionless

time, t

0.1 0.2 03 04
Dimensionless position, x/b
(d)

F16. 3. Effect of heat conduction on transient temperature distributions for three optical side lengths. (a)
Boundary temperatures, optical thickness, B, = ab = 2. (b) Boundary temperatures, optical thickness,
B, = ab = 5. (¢c) Boundary temperatures, optical thickness, B, = ab = 10. (d) Centerline temperature

distributions, B, = ab = 10.



Finite difference solution

Local heat flux, q(X, 0, x)/ch,4

| | [ ] |
0 0.1 0.2 03 04 05
Dimensionless position, b

(a)

10 — Dimensionless

Local heat flux, q(X, 0, t)/oT?

0 0.1 0.2 03 04 0.5
Dimensionless position, wb
(b)

F1G. 4. Effect of heat conduction on transient boundary heat

flux distributions for three optical side lengths. (a) Optical

thickness, By, = ab = 2. (b) Optical thickness, B, = ab = 35,
(c) Optical thickness, By = ab = 10.

by using the ratios on the curves in conjunction with
equation (11). For a small optical thickness the region
always has a fairly uniform temperature distribution.
It follows that for B, = 2, Fig. 5(a), the transient
mean temperatures are only a few percent above the
uniform temperature values. Consequently for
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Fi6. 4. —Continued.

B, < 2, the simple equation (9) can be used for any
N to obtain very good results for the transient mean
temperature. The g,, values for equation (9) can be
obtained from the solution in ref. [22]. Some values
are in Table 1, and a curve is in Fig. 6, When N = 0.1,
Fig. 5(a) shows that agreement is obtained with equa-
tion (9) within less than 2% error when B, is 5 or less.
Similarly from Fig. 5(b), for N = 0.3 agreement with
equation (9) within 2% is obtained for B, as large as
10.

Transient overall heat loss from region

The instantaneous overall heat loss from the region
is in Figs. 7(a) and (b). This is given as a ratio to the
heat loss for a region with spatially uniform, but time
varying, temperature, equation (12). Since Q,(z) is
edsily calculated from equation (10) using available ¢,
values, the Q(t) can be readily cbtained for design
purposes from the ratios given. During the early por-
tion of the transient the rate of energy loss is lower
than for a region with (X, ¥, 7) independent of X, Y.
As time proceeds the ratios may become a little larger
than unity. This is because the mean temperature has
decreased more slowly than for the spatially uniform
temperature case. As a result, late in the transient the
mean temperature is large enough so that the heat loss
may exceed that reached for the spatially uniform
temperature case. For B, < 2 and any ¥, the transient
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Table 1. Overall emittance, &, = Q/4bsT3, for a square
region at uniform temperature

Optical Optical

length length

of side, of side,
B, Em.ut B, Emout
0.2 0.175 4 0.891
0.5 0.367 5 0914
1 0.571 7 0.939
2 0.768 10 0.958
3 0.850

15 0.972

1.0

Emittance, €,
»

| | | ] |
2 4 6 8 10
Optical thickness, By, = ab.

FiG. 6. Emittance for square region at uniform temperature.
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heat loss differs by less than 2% from the values
computed using a spatially uniform temperature
distribution.

Transient emittance of region

From the transient mean temperature of the region,
a transient emittance is calculated from equations (4)
and (6). Results for B, = 2, 5, and 10 and various N
values are in Fig. 8. N=0 (radiation only) provides
the largest transient emittance variation. For N -
the temperature distribution is uniform so &,(t) re-
mains at g, throughout the transient. Since the
region is initially at uniform temperature, the curves
in Figs. 8(a) and (b) start at the &, values. During the
transient, the more pronounced cooling of the outer
regions of the medium causes the instantaneous radi-
ative loss to be smaller than that characteristic of the
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instantaneous mean temperature. As shown by the
similarity solution in ref. [21], for no heat conduction
the transient emittance decreases with time to a steady
value that depends on B,. With conduction, the tem-
perature distribution gradually becomes more uni-
form as the transient proceeds. The transient emit-
tance then increases toward its initial value
corresponding to a uniform temperature region. This
is an asymptotic approach, but the behavior is evident
from the results shown.

CONCLUDING REMARKS

A solution procedure was developed for the tran-
sient cooling of a rectangular emitting, absorbing and
heat conducting medium. Transient results were
evaluated for a square region initially at uniform tem-
perature, and then cooled by sudden exposure to a
cold vacuum environment. Because of the boundary
conditions, and the large variations in temperature
that occur near the boundaries for some conditions,
approximate methods based on diffusion or moment
expansion methods are of questionable accuracy. It is
demonstrated that direct numerical techniques can be
applied without difficulty. A combination was used,
of Gaussian integration and a finite difference method
with variable spatial and time increments. Computer
times on a CRAY X-MP were about | min for each
time increment, and about 20 increments were required
for a complete transient solution. Results for the
transient mean temperature and overall heat loss of
the region were compared with simple analytical
expressions for a region always having a spatially
uniform temperature during the cooling transient.
The ranges of optical size and conduction parameter
are shown within which this simple method will pro-
vide mean temperature and overall heat loss results
accurate to within a few percent. Details are given for
transient local surface heat fluxes for three optical
dimensions of the region. The numerical method can
be used to provide accurate detailed transient tem-
perature distributions in a radiating and conducting
medium.
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APPENDIX

The tridiagonal matrix to sweep in the X direction for each Y to determine the Ag,; is as follows:

by, cy 1 A‘Pl,/l Sy,
ay; bz., Caj A(Pz‘/ APy
ay; by, ¢y A‘P},/ = | 8 s (Al)
Ty .
L ap; by _A(pl,j J | Sty
where the terms are
Forl <j<J
NAz TPy T B NAz
BT TAX (AN 1Ay CSISITH 4T TRy
b At 51?'“- NAz
L 2 A (AXY)?
At 6R,; NAz
= — Yy 2<gi<I-1
by =145 o T AxrAx !
At 6R; NAt
=1ty axy?
A
‘ __NAz cy= Nac 2<i<i—1.

g (AX+)2’

TAXT(AXTFAXY)




Finite difference solution
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The tridiagonal matrix to sweep in the Y direction for each X to determine the Az, is
B, C, —l Aty W Ag, —l
A, B, Cis At;, Ao,
Ci,./- 1
A B, Aty A,
where the coefficients are
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Ay= — e 2K K1 A= e e
N TN GV G B A== Ry
NAz NAt
B =14, B ,=l4+—s
i +(AY+)‘ 3 T(AY )2
NAt
B I+AY"AY’ 2<j<J-1
NA NA
Cp= =i Cy= - i 2</<J-1

@aYHr AYY(AYT +AY)

SOLUTION DE DIFFERENCES FINIES POUR LE REFROIDISSEMENT RADIATIF
VARIABLE D’UN DOMAINE CARRE CONDUCTEUR ET SEMI-TRANSPARENT

Résumé—On obtient les solutions transitoires pour un domaine carré de matériau conducteur semi-
transparent refroidi par rayonnement thermique. Ce domaine est placé dans le vide et I'énergie est dispersée
seulement par rayonnement 4 partir des limites du domaine. L’effet de la conduction est de répartir
partiellement la distribution interne de température. Lorsque P’épaisseur optique du domaine augmente,
les gradients de température croissent prés des frontiéres et des coins, 4 moins que la conduction thermique
soit grande. La procédure de résolution peut fournir des distributions de température précise dans ces
régions pour éviter une erreur dans le calcul des pertes par rayonnement. Une intégration gaussienne
numérique bidimensionnelle est utilisée pour obtenir le terme de source radiative locale. Une procédure
aux différences finies avec incréments variables d’espace et de temps est utilisée pour résoudre I'équation
d’énergie transitoire. Un espacement variable est utilisé pour concentrer les points de la grille dans les
régions a grands gradients de température.

(A2)
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BERECHNUNG DER TRANSIENTEN STRAHLUNGSKUHLUNG EINES
WARMELEITENDEN HALBTRANSPARENTEN QUADRATISCHEN GEBIETS
MITTELS FINITER DIFFERENZEN

Zusammenfassung—Die Strahlungskiihlung eines quadratischen Gebiets aus wirmeleitendem halbstrans-
parentem Material wurde fiir instationdre Bedingungen berechnet. Das Gebiet befindet sich in einer
evakuierten Umgebung, so daB Enecrgie ausschlieBlich durch Strahlung aus dem Medium durch seine
Berandung hindurch transportiert werden kann. Die Wirmeleitung fiihrt wihrend des transienten Vorgangs
zu einem teilweisen Ausgleich der Temperaturverteilung im Inneren. Trotz der starken Wirmeleitung
werden die Temperaturgradienten mit wachsender optischer Dicke des Gebiets an dessen Begrenzungen
und in Ecken groBer. Das Losungsverfahren mufBl in der Lage sein, genaue Temperaturverteilungen in
diesen Gebieten zu liefern, um Fehler im berechneten Strahlungsverlust zu vermeiden. Die ortlichen
Strahlungsquellterme wurden mit Hilfe einer zweidimensionalen numerischen Integration nach Gauss
ermittelt. Die instationdre Energiegleichung wird mittels eines Finite-Differenzen-Verfahrens mit variabler
Orts- und Zeitschrittweite gel6st. Die variable Schrittweite ist erforderlich, um in Bereichen mit starken
Temperaturgradienten Knotenpunkte konzentrieren zu kénnen.

PEHNIEHUE KOHEYHO-PA3BHOCTHBIM METOJOM 3AJAYH HECTALITMOHAPHOI'O
OXJIAXAEHUSA U3TYYEHUEM TEIJIONPOBOJAAIEN MOJIVIIPO3PAYHON
KBAJIPATHOU OBJIACTH

Anmoramms—ITonyyensl HecTallMOHApHBIE PEILICHUS IUIA OXJIaX/EHHS KBaApaTHOH o6siacTH Tersompo-
BOJALIETO MOJYIPO3PaYHOro MaTepHaa 3a CYET TEILUIOBOro H3jtyyeHHs. O61acTh HAXOMATCA B BAKYYME,
[IOITOMY 3HEPIHs PACCEMBACTCA TONBKO H3MydenueM. D¢deKT TeIUTONPOBOJHOCTH NPH HECTALHOHAD-
HOM mpolecce CNoco6CTBYET BLIPABHHBAHHIO BHYTPEHHETO pacnpeneseHus Temrepatyp. C pocroMm
ONTHYECKOM TOJUIMHBL OONIACTR TeMIlepaTypHble I'DafNeHTH BO3JIE TPaHHIl H YIJIOB YBEIMYHBAIOTCA,
ec/Id TEeIUIONPOBOAHOCTh HeBeNMMKa. Bo m30exaHHMe MOrpelHOCTEH B pacyeTax HOTeph Ha H3JIyyeHHE
METOMMKA pelIeHHs HOJKHA ofecneuuBaTh TOYHOE ONpENEsICHAE pacnpelesieHHi TeMmepaTyp B HcCle-
ayeMbix obsactsx. Jl1a HaXOXIAEHHs JIOKAJIBHOr0 HCTOYHHKA M3JTyUeHHS HCMONL3YeTCA ABYMEPHOE YHC-
JIEHHOE TayCCOBCKOE HHTErpHpoBaHme. HecTaumoHapHOe ypaBHEHHE COXDAHEHHS SHEPTMH peHIacTCs
KOHEYHO-Pa3HOCTHBLIM METOIOM C H3MEHSIOLUMMMHCSA MPOCTPAHCTBEHHLIMH H BPEMEHHBIMH miaramu, C
UEJIbIO KOHTEHTPALMHA TO4EK CETKH B 06J1acTsAX ¢ GONBIIAMH TEMIEPATYPHBIMHE IPaIMEHTAMHI HCIIOJB30-
BaJICA IEPEMCHHBIH 1Iar.



