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Abstract-Transient solutions were obtained for a square region of heat conducting semitransparent 
material cooling by thermal radiation. The region is in a vacuum environment, so energy is dissipated only 
by radiation from within the medium leaving through its boundaries. The effect of heat conduction during 
the transient is to partially equalize the internal temperature distribution. As the optical thickness of the 
region is increased, the temperature gradients increase near the boundaries and corners, unless heat 
conduction is large. The solution procedure must provide accurate temperature distributions in these 
regions to prevent error in the calculated radiation losses. Two-dimensional numerical Gaussian integration 
is used to obtain the local radiative source term. A finite difference procedure with variable space and time 
increments is used to solve the transient energy equation. Variable spacing was used to concentrate grid 

points in regions with large temperature gradients. 

INTRODUCTION 

TRANSIENT thermal processes in semitransparent 
materials arise in applications using high temperature 
ceramic coatings and components, in processes for 
crystal growth by solidification in an outer space 
environment, and in observation windows in high 
temperature devices. Transient solutions are in the 
literature for various one-dimensional situations such 
as single and multiple semitransparent plane layers, 
and spheres. For multidimensional geometries, how- 
ever, very little information exists for transient radi- 
ative processes, especially where heat conduction is 
included. Results are obtained here for a square 
region, although the basic analysis is carried out more 
generally for a rectangle. 

In a semitransparent material where radiative trans- 
port acts simultaneously with heat conduction, the 
radiation fluxes depend strongly on the temperature 
level. Hence, during a transient calculation, accurate 
temperature distributions must be obtained at each 
time step or the error in the radiation terms will cause 
the results to become considerably in error as time 
advances. 

For some types of thermal boundary conditions, 
approximate analytical methods, such as those 
developed from radiative diffusion concepts, do not 
yield accurate transient solutions as they cannot deal 
with the boundary conditions with sufficient accuracy. 
Although the diffusion approximation is valid in the 
central portion of an optically thick region, it does 
not apply near a boundary, and additional approxi- 
mations are needed to deal with the boundary con- 
ditions. The extent of the error incurred by using the 
approximate boundary conditions is difficult to assess 

for situations that have not been examined previously 
in detail, such as transient solutions of the type treated 
here. In the present case, because the semitransparent 
region is cooling in a vacuum environment at a low 
temperature, the unknown boundary temperatures 
depend on both time and position. 

The solution requires two numerical operations. 
One is integrating the radiation contribution arising 
from the temperature distribution surrounding each 
location to obtain the local transient radiative source 
distribution within the medium. The second is the 
transient solution of the energy equation using this 
source distribution. A Gaussian integration method 
is used here to evaluate the source function distri- 
bution. A finite difference procedure with variable 
grid and time increment sizes is used for solving the 
energy equation. This approach demonstrates that 
numerical procedures can be applied directly to the 
exact energy equation and boundary conditions, to 
yield accurate transient cooling solutions for com- 
bined radiation and conduction when the boundary 
temperature distribution is unknown and varies with 
time. 

For plane layers, many steady-state solutions have 
been obtained as reviewed in textbooks such as ref. 
[l]. Although transient studies for plane layer geome- 
tries are much fewer in number, a variety of situations 
has been analyzed for single and multiple layers [2- 
10]. In the early 1980s solutions involving radiative 
transfer in absorbing-emitting media with non- 
uniform temperature distributions advanced con- 
siderably from one-dimensional to two- and some 
three-dimensional situations. Numerical solutions of 
these more difficult multidimensional cases become 
feasible as larger and faster computers become avail- 
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NOMENCLATURE 

aspect ratio of rectangular region, d/b 
absorption coefficient of layer [m-- ‘1 
optical length of short side of rectangle, 

ab 
length of short side of rectangle [m] 

T, integrated mean temperature [K] 
t dimensionless temperature, T/T, 

.y, .v, s rectangular coordinates [m] ; .Y = .\-:‘h. 
Y = y/b, Z = z/h. 

specific heat of radiating medium 

[Jkgg’K-‘1 
length of long side of rectangle [m] 

number of grid points in X and Y 

directions 
thermal conductivity of radiating 

medium [W mm ’ K- ‘1 
conduction-radiation parameter, 

k/4aTi’b 
normal direction 

heat loss from entire perimeter for a 
unit of axial length z [W mm ‘1 

local heat fluxes leaving long and short 

sides [W m ‘1 

Greek symbols 
A increment of length, temperature, or 

time 
AX, A Y grid spacings in X and Y directions 

A4J intermediate value in equation (1 gb) 

6X transient emittance of region based on 

instantaneous values of Q and T,,, 

C”l emittance for region at uniform 

temperature 
(I time [s] ; angle in cylindrical 

coordinates [rad] 

P density of radiating medium [kg m ‘1 

U Stefan-Boltzmann constant 
[Wm-*Km4] 

z dimensionless time, (4aT~/pc,b)O. 

energy equation 
function defined in equation (2) Subscripts 

terms in matrix equation (Al) i initial condition ; the ith X location 

absolute temperature [K] j thejth Y location 

temperature of surrounding m integrated mean value over region ; 
environment [K] based on mean value 

initial temperature of radiating region n at the nth time increment 

]Kl llt uniform temperature condition. 

able. A transient solution requires more cotnputer 

time than a steady solution, since the multi- 
dimensional radiative source distribution must be 

evaluated at each time step. The references that follow 
are almost all for steady conditions. Very little has 
been done on multidimensional transient problems, 
especially when heat conduction is included. 

Steady-state numerical solutions have been carried 
out in the literature by a number of techniques, such 
as using discrete ordinates [ 11,121 and finite elements 
[ 13, 141. Various expansion and numerical methods 
have been used in refs. [IS-191. A few transient solu- 
tions for rectangular geometries without heat con- 

duction are in refs. [20,21]. The present analysis used 
a finite difference method with implicit forward time 
integration, and two-dimensional Gaussian inte- 
gration to evaluate the local radiative source term. 

A common boundary condition is to specify surface 
temperatures. In the present situation the radiating 
region is cooling by exposure to a cold environment, 
and the surface temperature distribution is an 
unknown function of time. The environment is a 
vacuum, such as in outer space, and hence there is no 
means to remove energy from the surfaces of the 
region by convection or conduction. The region is 

semitransparent so radiant energy from within the 

region passes out through its boundaries. This is vol- 
ume emission so there is no radiation emitted from 
the surface itself. Energy can be conducted to the 
surface, but cannot be radiated exactly from the sur- 
face since the surface has no volume. The boundary 
condition for the temperature distribution is that the 

local temperature gradient normal to each surface is 
zero. Heat conduction redistributes energy within the 

region, but energy is lost only by radiation. 
For some conditions, such as for an optically thick 

region, the transient temperature distributions are 

quite curved near the boundaries. If the temperatures 
near the boundaries and corners are inaccurate, the 
radiative loss can be significantly in error. For an 
accurate transient solution, the zero temperature 
gradient boundary condition that applies for the pre- 
sent external conditions must be accurately achieved 
by the numerical procedure. Otherwise the solution 
will behave as if there is an additional energy loss or 
gain at the boundary and this leads to an accumulative 
error in the overall heat balance during the transient 
cooling calculations. To be able to obtain accurate 
temperature distributions near the boundaries for 
conditions of transient radiative loss, a finite differ- 
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ence procedure was used with a variable increment 
size to concentrate grid points in the near boundary 
regions. 

The temperature distribution of the rectangular 
region is initially uniform ; hence, its initial emittance 
is for that condition, which was analyzed analytically 
in ref. [22]. At the onset of transient cooling, the 
boundary regions cool rapidly. Unless the entire 
region is optically thin, this cooling reduces the overall 
emittance of the region since much of the radiation 
loss is originating from the portion adjacent to the 
boundaries which are at a lower temperature than is 
characteristic of the region interior. For an initial time 
period, the emittance continues to decrease with time. 
Then the radiation contribution to the energy ex- 
change becomes smaller because the temperature 
level has decreased. The magnitude of conduction 
relative to radiation increases ; this tends to make 
the temperature distribution more uniform as the 
transient proceeds further. The region emittance then 
increases toward its initial value which was for a uni- 
form temperature region. 

The variation of emittance throughout the transient 
depends on the optical thickness of the region, and 
on the initial conduction-radiation parameter which 
contains the thermal conductivity. For certain con- 
ditions, such as an optically thin medium, the tem- 
perature distributions tend to be rather uniform 
throughout the entire transient. In this instance the 
use of the emittance corresponding to a unifo~ tem- 
perature provides a very good approximation through- 
out the transient solution. The results will show the 
ranges of parameters for which this is a good approxi- 
mation, thus providing a simple prediction method 
for the overall behavior. 

ANALYSIS 

A rectangular region, as shown in Fig. l(a), has 
side lengths b and d. It is long in the z direction so 
the thermal behavior is two-dimensional. The region 
consists of a gray emitting, absorbing, and non- 
scattering medium that is heat conducting. Initially 
the region is at uniform temperature T,. It is then 
placed in much cooler su~oundings at T, so that 
energy is lost by radiation. The surroundings are a 
vacuum so that radiation emerging from within the 
region is the only means of energy loss. The sur- 
rounding temperature is low enough, T, << T(x, y, O), 
so that radiation from the surroundings to the region 
can be neglected. The rectangular region conducts 
heat internally, but because of the vacuum sur- 
roundings, there is no mechanism by which heat can 
be conducted or convected away from the boundaries. 
Hence, the normal derivative of temperature is zero 
along the entire boundary. 

The transient energy equation has the dimen- 
sionless form [ 17, 18, 201 
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FIG. 1. Two-dimensional emitting, absorbing, and heat con- 
ducting rectangular medium. (a) Geometry and coordinate 

system. (b) Nomenclature for nonunifo~ grid. 

B, ‘+R ’ -- 
4 s 5 

t4(x,, Y’,r)=;*dX’dY , 
r=o y’=l) 

where 

R = R(X, Y,x’, Y’) = [(A”--x)2+(yl_ y)‘]‘:~. 

Equation (1) expresses that the local change of inter- 
nal energy is the result ofthe local net heat conduction, 
local radiant emission, and the gain of energy by radi- 
ation from the surrounding medium. S, is one of a 
class of S, functions examined in ref. [23] that arise in 
two-dimensional radiative transfer 

e-~~“““~cos”-’ /? d/I. (2) 

As discussed later, a finite difference procedure with 
variable increment sizes in space and time is used to 
obtain the transient tem~rature distributions 
t(X, Y, r). The initial condition for the region is 
t(X, Y,O) = 1. Radiation passes out from within the 
volume, but does not originate from the surface itself 
(which has no volume). Consequently for all r, the 
boundary conditions for a vacuum environment are, 
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(7t/8X=OforX=0,AR, O< Y< 1, 

and 

?tjdY=Ofor Y=O,l, O<X<A,. 

Local heat fluxes and total energy leaving boundary 

The local heat flux leaving the boundary at any time 

is obtained by integrating over the volume the energy 
that arrives at a position on the boundary from each 

volume element. This was done in refs. [l&20] and 
gave the local fluxes leaving the long and short sides 

in Fig. 1 as 

ql(xY7) AlI ’ 

CT,4 =Bs s 0 t”(x’, Y', t) 
X’=” y=(j 

S,(B,R,) 
x(1-Y’) R2 d Y’ dX’ (3a) 

I 

qs(Y,z) AR ’ 
_______ = B, 

(TTp s s 
t”(X’, Y’, z) 

X’:O Y’=” 

x (A, _X’) ?,(BoR2) ______ d Y’ dX’ 
R; 

(3b) 

where 

R: = (X-X,)*+(1-Y’)‘, 

R; = (AR-X’)*+(Y- Y’)I. 

The instantaneous rate of energy loss from the 
entire boundary per unit length in the z direction is 
found by integrating the local fluxes over the four 

sides to yield, 

[I 

d 

Q(o) = 2 
0 

q,(:.s)d+slu,(,,O)dr]. 

This has the dimensionless form 

Q(O) = 2(b+d)&,,(O)aT~(fQ. In dimensionless form, 
this gives 

c,(r) = a,(r)ltn:(r). (6) 

As a check on the numerical work, E,(O) was also 
obtained from the heat balance, 

2(b+d)&,,(B)crT:(fI) = -pc,bd dT,,,(B)/dO, 

that has the dimensionless form 

(7) 

Since the time increments are small enough that E,(Z) 
changes only a small amount for each AT, equation 

(7) can be integrated analytically over a small interval 
from z to r + AZ to yield 

F,(T to z+Ar) = 
I 1 G(r) 

(8) 

This provides another equality to check the con- 
sistency of the results from the numerical solution. 

Relations for region at spatially uniform temperature 

For comparison, transient solution results are 
obtained for a rectangular region that always has a 
spatially uniform temperature. For this situation, the 
emittance is a constant for each optical dimension B,,. 

It is called E,~ and is evaluated at the beginning of each 
transient solution where the first set of boundary 
heat flux integrations is for an initially uniform 

temperature distribution. The E,~ is also obtained 
in ref. [22] by another method. By integrating equa- 
tion (7) with a,,, = c,,, 

= ~~ _~ q,(X,r)dX+10,(Y,r)dY]. (4) 
Then from QUt(e) = 2(b+d)E,,rrT&,(O), the instan- 

taneous overall heat loss is expressed in terms of zUt 
and z as 

The s,(t) is the transient overall emittance for the 
entire region, based on the instantaneous total energy 
loss and the initial temperature. 

Qut (~1 
2(b+d)crT:’ = “’ 

Local and mean emittance relations 

At any time during transient cooling, the mean 
temperature is obtained from T(.x, y, 0) by using, 

T(x, I', 0) dx dy, 

which gives the dimensionless form 

Tm(Q - t,(7) = ,‘L 

AR ’ 

T, s s t(x, Y,r)dXdY. (5) 
R x=0 Y-0 

The instantaneous emittance E,(O) for the overall 
heat loss, based on the instantaneous mean tem- 
perature, is obtained from the heat balance, 

It is evident from equations (9) and (10) that if E,~ 

is known, it is very easy to compute the transient mean 
temperature and overall heat loss for a region that 
always has a spatially uniform temperature. The 
results for transient cooling of the actual region that 
has a nonuniform temperature distribution can be 
conveniently presented as a ratio relative to the uni- 
form temperature results. The mean temperature t,(z) 
for the actual transient is given relative to that for a 
region at spatially uniform and time varying tem- 
perature by 

t¶n (7.) ~ = t,(z) 
3 I+& 

tm.ut(G 4 
1+ 2 -A E,,Z (11) 

R 
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Similarly the instantaneous overall heat loss Q(r) rela- 
tive to that for a region always at spatially uniform 
temperature is given by 

QW &ll(~) 4/3 

-=- Qudc 4 C(z) 1+ 

3 l+& 
E,t 2 7 E,tT > (12) 

R 

Procedure for numerical solution 
To shorten the notation while developing the solu- 

tion method for equation (I), the radiation terms on 
the right-hand side are called R”. The equation then 
has the form 

; = N($ + $)-d(t). (13) 

By using the trapezoidal rule to integrate over a 
small time interval, the local temporal change in t is 
expressed in terms of dt/& at successive times by 

At=tn+,-t,,= 
s 

(14) 

The value of fin+, needed for obtaining (at/&),+, 
in equation (13) is obtained in terms of I?, by the 
expansion 

%,I =R+ g (t,,, ( -1 -Lx). (15) 
” 

The second derivatives in equation (13) can be written 
at T + AT as (5 is either X or Y), 

(16) 

Substituting equation (13) into (14) and then using 
equations (15) and (16) the equation to be solved for 
At becomes 

[l+;($)+($+$)]At 

= AT[N($ + $)+l. (17) 

The alternating direction implicit method (ADI) 
will be used. A general description is given in ref. [24] ; 
the method used here from ref. [2_5] differs somewhat. 
The second derivative operator on At is split into 
each of the coordinate directions, and equation (17) is 
approximated by 

(1-;N$)At=hp. (18b) 

To move ahead one time increment, equation (18a) is 
solved for Aq. This is done by solving along grid 
points in the X direction for constant Y values. The 
Acp are then used on the right-side of equation (18b) 
which is solved for At along grid points in the Y 
direction for constant Xvalues. 

The rectangle has a grid as shown in Fig. l(b). 
There are Z and J points in the X and Y directions so 
the index ranges are, 1 < i < Z and 1 < j < J. Since 
all terms in equation (18) are at the time interval 
corresponding to the index II, this subscript will be 
omitted ; the i, j subscripts are used to specify the X, Y 
location. Thus, the relations in equation (18) are for 
obtaining Atij at all grid locations at time r,. This 
gives the temperatures for all X, Y at the new time by 
using t,, , = t,+At, at each grid point, i,j. Using 
equation (18a) a sweep is made in the Xdirection for 
each j to obtain the Arp, for all i. Then using equation 
(18b) a sweep is made in the Y direction for each i to 
obtain At,,. To obtain the tridiagonal matrix for each 
sweep, variable increment sizes AX and A Y are used 
within the region. The second derivatives are placed 
in finite difference form with AX-, AX+, AY-, and 
A Y+ extending in the negative and positive coordinate 
directions as in Fig. 1 (b) 

a*t 2ti+ IJ 24, ~- 
aX2 - AX+ (AX’ + AX-) - AX+AX- 

2L I,, 
+ AX- (AX+ + AX-) (19a) 

a3 %j+ 1 % -= 
ay2 AY+(AY+ +AY-) - AY+AY- 

2t,,,- I 
+ AY-(AY+ +AY-) (19b) 

where AX+ = Xi+ ,,j- XiJ, and AX- = XL,,-I,_ ,,,, 
and similarly for A Y. 

Equation (19) is inserted into (18) with the result 

AzN 
- AX+ (AX+ + AX-) ‘VI+ 1.j 

AzN 
Ax+ Ax- ‘%., 

AzN 
- Ax- (Ax+ + Ax-) ‘% I./ 

= A,[,($ + $I--&,] (18a) (20a) 
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Equations (20a) and (20b) are valid for ail interior 
points 2 <iiI-1,2<j<J-l.Ateachboundary 
there is’ a zero normal temperature derivative as 
explained earlier. Hence equations (20) have special 
forms at the boundaries obtained by letting the tem- 
perature at a mirror image grid point outside the 
boundary be the same as at the first interior grid point 
value away from the boundary. Thus, for example, at 
i = 1, j # l,J, equation (20a) is modified by letting 
the value at a fictitious point i = 0, j # 1, J be 

‘PO., = 4n2,,. and by letting AX.- = AX+. This yields at 
i= l.,j+ 1,J 

Equations (20a) and (20b) and the boundary con- 
dition relations as illustrated by equation (21) are 
assembled into the two tridiagonal matrices in the 
Appendix. Since R(r) represents the radiation terms 
in equation (I), the ciR”/& needed for the b coefficients 
is 

x R(;‘;$& dX’ d Y’]. (22) 

The tridiagonal matrices are each solved using the 
well-known algorithm in refs. [24,26]. The matrix 
(Al) gives a sweep of values across the X direction 
for each value of Y. Then the resulting Aqi,, are used 
in matrix (AZ) to obtain At,j by making a sweep in 
the Y direction for each X. These At, which are at each 
X, Y are added to the t(X, Y) to advance to the next 
time increment. 

To evaluate the radiative source term R(t) and 
irk/&, that are in the matrix coefficients, an accurate 
integration method is required. The S,(B,R) is well 
behaved as R -+ 0, but the l/R factor makes the inte- 
grands of equations (1) and (22) appear to be singular 
as the integration variables x’, Y’ approach the grid 
point X, Y. The integrands are not singular as is evi- 
dent by using cylindrical coordinates R, B about X, Y. 
The dX d Y becomes R dR dfI and the 1/R is removed. 

However, when using rectangular coordinates for the 
purposes of integration, as in the present method, the 
apparent singularity must be considered for small R. 
For this reason, the integration surrounding each X. Y 
was divided into seven regions, Fig. 2(a). Region 7 is 
a small square of width less than one-half the local grid 
spacing. This was replaced by a small circle having the 
same area as the square, and the integration over region 
7 carried out in cylindrical coordinates. This region 
provided only a small part of the total double integral, 
so this approximation did not yield significant error. 

To carry out the integrations, the cross-section was 
covered with a grid of unevenly spaced points with 
more points near the boundaries where the tem- 
perature profiles have the largest curvature. For the 
integrations at each r, two-dimensional spline fits were 
made of t4(X, Y, z) and t3(X, Y. t), as needed for d(t) 
and a&/‘jat, using IMSL routines BSNAK and BS21N. 
The spline coefficients were used to interpolate values 
at locations between grid points as called for by a 
two-dimensional integration subroutine. A Gaussian 
routine, SQUAD1 was used as described in ref. 1271. 
This uses 16 Gaussian points in each coordinate dire,- 
tion and was found in an earlier study [20] to provide 
excellent agreement with an 1MSL Gaussian routine 
using more integration points and requiring sig- 
nificantly more computing time. By trying various 
numbers and sizes of the spatial increments. it was 
found that 19 unevenly spaced grid points across each 
direction {illustrated in Fig. l(b)) gave accurate results 
for a square region. The increment size was small 
adjacent to the boundaries where four points spaced 

Y 5 3 
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(4 

612 -+l-- 
3 ITI 4 

t I 1 
(x, b) - L 5 

1 2 

X 

@I 

FIG. 2. Integration regions for evaluating local radiative 
source and local fluxes along boundary. (a) Regions for 
double integration for radiative sourc$. (b) Regions for 

double integration for boundary flux. 
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0.02 apart were used. In the central portion of the 
region a spacing of 0.1 was found adequate. A similar 
spatial integration procedure with five subregions was 
used to determine the local heat fluxes along the 
boundary, Fig. 2(b). 

To evaluate equation (3), S,(B,R) values are 
required, and similarly S,(B,R) values are needed 
for R”(t) defined in equation (13), and for iY@fJt in 
equation (22). The S, and S2 functions were evaluated 
from equation (2) by using IMSL integration routine 
QAND, and function tables were prepared. Values of 
S, and S2 for use in the two-dimensional integration 
routine were interpolated from the tables using IMSL 
cubic spline routines CSINT and CSVAL. 

The calculations were carried out with a CRAY 
X-MP computer and required about 1 min per time 
increment for a 19 point grid (361 points in the square 
region). A variable time increment was used with the 
AT = 0.01 initially, and then gradually increased 
through the calculation as the rate of temperature 
change decreased. The time increments were such that 
t, changed about 0.02 for each time increment after 
using a few smaller increments at the beginning of 
the transient. About 20 time increments wete used to 
reach a condition where about 40% of the initial 
energy in the region had been dissipated. 

RESULTS AND DISCUSSION 

Transient te~~erat~re ~istribution.s 
Using the numerical solution procedure, transient 

temperature distributions were obtained in a square 
region. Typical results are in Fig. 3 for optical side 
lengths, B0 = 2, 5, and 10, and for the conduction 
parameter N = 0, 0.1, and oo. Because of symmetry, 
values are given along only one-half of a side or cen- 
terline. Parts (a)-(c) give values along the outer bound- 
ary, and part (d) along the centerfine. When the tran- 
sient begins, the hot region is suddenIy subjected to a 
cold black environment and the outer portions of the 
region begin to cool the most rapidly. For finite heat 
conduction (N > 0) the conditions of the problem 
yield a zero temperature gradient normal to the 
boundaries. When B, is fairly small as in Fig. 3(a), 
the transient profiles are rather flat as is characteristic 
of an optically thin region. When the optical dimen- 
sion is increased to 10, Fig. 3(c), the ~mperature 
distribution can be quite curved near the boundary as 
N approaches zero. For N = 0.1 the heat conduction 
is large enough to provide significant equalization of 
the temperature distribution across the region. There 
is less equalization early in the transient where the 
temperature distributions have been influenced more 
by the rapid action of the radiative transfer than by the 
slower action of energy diffusion by heat conduction, 

The dimensionless temperature distribution is 
initially unity. Profiles are shown at four time values 
during the transient, corresponding to when approxi- 
mately 3, 10, 25, and 40% of the initial energy in 
the region has been radiated away. For N = 0.1 the 

boundary temperatures in Fig. 3(a) are above those 
for N = 0. Conduction has somewhat equalized the 

temperatures over the cross-section thus raising the 
temperatures near the boundaries above those for zero 
conduction. When B, is increased to 10, Fig. 3(c), the 
transient surface temperature dist~butions without 
conduction are more curved, and heat conduction can 
then provide a more significant effect in raising the 
surface temperatures. This effect of N is shown more 
clearly by Fig. 3(d) which shows the temperature dis- 
tribution along the centerline of the cross-section for 
&, = 10. Heat conduction results in increased tem- 
peratures at the boundary and decreased temperatures 
in the central region. For 8, = 10 the central region 
cools much more slowly than the portions adjacent to 
the boundary 

Transient wface heat jluxes 
Figure 4 gives the local heat fluxes leaving through 

the boundary of a square region at the same times as 
in Fig. 3. The heat flux profiles become more curved 
as conduction decreases and the optical dimension of 
the region increases. As time advances, the decrease 
in temperature throughout the region reduces the 
radiative transfer, and the heat flux profiles become 
more Bat. For B, = 2 the temperature distribution is 
already fairly flat when conduction is absent. Hence, 
the addition of conduction has little effect on the 
temperature profiles, and the resulting heat fluxes in 
Fig. 4(a) are practically inde~ndent of N. Figure 
4(b), for B, = 5, shows a somewhat larger effect of N 
on the heat fluxes and the effect increases as the tran- 
sient proceeds. For B, = 10, Fig. 4(c), heat con- 
duction has a significant effect on the local radiated 
fluxes ; results for N = 0.3 are also included. As the 
transient proceeds and the temperature level 
decreases, thereby reducing the relative importance of 
radiation, the curves for N = 0.3 gradually approach 
those for N--t co. Since the temperature distribution 
is uniform at the initiation of the transient, the numeri- 
cal results for the initial surface Auxes were compared 
with the analytical solution in ref. [22], the values 
agreed to within a few tenths of 1 percent. 

Transient mean temperature of square region 
With regard to the total amount of energy that has 

been radiated away, the transient mean temperature 
of the region, tm(z) is of interest. This is shown in Fig. 
5 for various B,, and N. The ordinate is the ratio of 
t,,,(r) to the mean temperature that would be reached 
at the same time if the square region always had 
t(x, Y, r) independent of X, Y and hence had the 
maximum emittance that could exist for the 5, of the 
region (see equations (9) and (11)). The ratio is unity 
for N --+ co since the tem~rature distribution is uni- 
form in this instance. For any finite N the rate of heat 
loss is smaller than for N -+ cc so at any z the t,(t) is 
larger than tm,ut(T); hence, the ratios in Fig. 5 are 
larger than unity. For design purposes the mean tem- 
perature t,(z) for various BO and N can be estimated 
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FIG. 3. Effect of heat conduction on transient temperature distributions for three optical side lengths. (a) 
Boundary temperatures, optical thickness, B, = ab = 2. (b) Boundary temperatures, optical thickness. 
B, = ab = 5. (c) Boundary temperatures, optical thickness, B, = ab = IO. (d) Centerline temperature 

distributions, B, = ab = 10. 
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FIG. 4. ERect of heat conduction on transient boundary heat 
flux distributions for three optical side lengths. (a) Optical 
thickness, B, = ab = 2. (b) Optical thickness, B, = ab = 5. 

(cf Optical thickness. B, = ah = IO. 

by using the ratios on the curves in conjunction with 
equation (11). For a small optical thickness the region 
always has a fairly uniform temperature distribution. 
It follows that for B, = 2, Fig. 5(a), the transient 
mean temperatures are only a few percent above the 
uniform temperature values. consequently for 
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I I I I 
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Dimensionless po&ion, xib 

(e) 
FIG. 4.--Continued. 

B. < 2, the simple equation (9) can be used for any 
N to obtain very good results for the transient mean 
temperature. The E,~ values for equation (9) can be 
obtained from the solution in ref. 1221. Some values 
are in Table I, and a curve is in Fig. 6. When N = 0.1, 
Fig. 5(a) shows that agreement is obtained with equa- 
tion (9) within less than 2% error when I.$, is 5 or less. 
Similarly from Fig. 5(b), for N = 0.3 agreement with 
equation (9) within 2% is obtained for BO as large as 
10. 

Trunsienf overall heat loss from region 
The instantaneous overall heat loss from the region 

is in Figs. 7(a) and (b). This is given as a ratio to the 
heat loss for a region with spatially uniform, but time 
varying, temperature, equation (12). Since &(T) is 
easily calculated from equation (10) using available E,~ 
values, the Q(z) can be readily obtained for design 
purposes from the ratios given. During the early por- 
tion of the transient the rate of energy loss is lower 
than for a region with t(X, Y, 7) independent of X, Y. 
As time proceeds the ratios may become a little larger 
than unity. This is because the mean temperature has 
decreased more slowly than for the spatially uniform 
temperature case. As a result, late in the transient the 
mean temperature is large enough so that the heat loss 
may exceed that reached for the spatially uniform 
temperature case. For B, < 2 and any N, the transient 



2588 R. SIEGEL and F. B. MOLLS 

t 
2 

1.05 

s 1.12 

1 

$ E ‘.‘O 
1 2 1.08 

cc 
$ E 1.06 
E ,E 
‘is 1.04 
,o 
$ 1.02 

1 .oo 

Conduction 
parameter. 

60 N 

0.4 0.8 1.2 1.8 2.0 

Dimensionless time, T 

(8) 

.8 

s 

t .6 
2 .4 .- 
l5 

.2 

0 10 

FIG. 6. Emittance for square region at uniform temperature. 

Conduction 
oiwarneter. 

0 0.4 0.8 1.2 1.6 2.0 

Dimensionless time, z 

(b) 

Fro. 5. Mean temperature of layer during transient cooling 
as compared with that for a layer cooling with uniform 
instantaneous temperature dist~bution. (a) Optical thick- 
ness, B, = rab = 2 and 5. (b) Optical thickness, B,, = ah = 10. 

Table 1. Overall emittance, E,,,,,~ = Q/4bo7’:, for a square 
region at uniform temperature 

Optical 
length 
of side. 

& %l.“, 

Optical 
length 
of side, 

& G”.“, 

0.2 0.175 4 0.891 
0.5 0.367 5 0.914 
I 0.571 7 0.939 
2 0.768 10 0.958 
3 0.850 15 0.972 
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FIG. 7. Transient heat loss as compared with that for cooling 
with a uniform instantaneous temperature distribution. (a) 
Optical thickness, B, = ab = 2 and 5. (b) Optical thickness, 

B, = ah = 10. 
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FIG. 8. Effect of conduction parameter and optical thickness 
on transient emittance. (a) Optical thickness, B. = ab = 2 

and 5. (b) Optical thickness, B, = ab = 10. 

heat loss differs 
computed using 
distribution. 

by less than 2% from the values 

a spatially uniform temperature 

Transient emittance of region 

From the transient mean temperature of the region, 
a transient emittance is calculated from equations (4) 
and (6). Results for B,, = 2, 5, and 10 and various N 
values are in Fig. 8. N = 0 (radiation only) provides 

the largest transient emittance variation. For N + cc 
the temperature distribution is uniform so E,(Z) re- 
mains at cut throughout the transient. Since the 
region is initially at uniform temperature, the curves 
in Figs. 8(a) and (b) start at the E,~ values. During the 
transient, the more pronounced cooling of the outer 
regions of the medium causes the instantaneous radi- 
ative loss to be smaller than that characteristic of the 

instantaneous mean temperature. As shown by the 

similarity solution in ref. [21], for no heat conduction 

the transient emittance decreases with time to a steady 
value that depends on B,,. With conduction, the tem- 

perature distribution gradually becomes more uni- 
form as the transient proceeds. The transient emit- 
tance then increases toward its initial value 
corresponding to a uniform temperature region. This 
is an asymptotic approach, but the behavior is evident 

from the results shown. 

CONCLUDING REMARKS 

A solution procedure was developed for the tran- 
sient cooling of a rectangular emitting, absorbing and 

heat conducting medium. Transient results were 
evaluated for a square region initially at uniform tem- 

perature, and then cooled by sudden exposure to a 
cold vacuum environment. Because of the boundary 

conditions, and the large variations in temperature 

that occur near the boundaries for some conditions, 
approximate methods based on diffusion or moment 
expansion methods are of questionable accuracy. It is 

demonstrated that direct numerical techniques can be 
applied without difficulty. A combination was used, 

of Gaussian integration and a finite difference method 
with variable spatial and time increments. Computer 

times on a CRAY X-MP were about 1 min for each 
time increment, and about 20 increments were required 
for a complete transient solution. Results for the 

transient mean temperature and overall heat loss of 
the region were compared with simple analytical 
expressions for a region always having a spatially 
uniform temperature during the cooling transient. 

The ranges of optical size and conduction parameter 
are shown within which this simple method will pro- 
vide mean temperature and overall heat loss results 

accurate to within a few percent. Details are given for 
transient local surface heat fluxes for three optical 
dimensions of the region. The numerical method can 

be used to provide accurate detailed transient tem- 
perature distributions in a radiating and conducting 
medium. 
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APPENDIX 

The tridiagonal matrix to sweep in the X direction for each Y to determine the Acp,,, is as follows : 

h 2.1 

a,, 

(‘2.1 

bi., 

a/., b l., 

I 

where the terms are 

For I <j<J 

NAT NAT 
a ‘./ = -m+Ax.) 2<i<I-I; u,.,=-7 

(AX-) 

AT ai?,, NAz 
b,.,=l+l,t+(,,+)z 

NAT NAT 
c ,,, = - 0”; cz,, = - ~___ ___- 2<i<I-1. 

AX+ (AX’ +AX--) 
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For2<j<J-I 

11, fl,- I 
S,, = At 

( 
-2~(t+rd)-&,f2N 

rlJ+ 1 
-- 

(AX’)’ 
_ ~I..__. + 

AY+(AY++AY-) AY+AY- AY-(AY++AY-) II 

+2N 
[ 

4,+ I ‘Li ‘!, - I 
AY+(AY+ +AY-) AY+AY- +-x-T II 

S, = Ar $Xh+ (Ed_ ,j - r,Lj) - r?i, + 2 N 
11 

AX+ = X,, ,j - X,, A Y+ = Y,,, , - Y,, 

AX- = X,,,-Xi_. ,,, AY- = Y,,,-Y,,_,. 

lfj = I replace [ ] by 
1 

(AY+)2 (ji,z-fi,l) 1 < i < I. 

1f.j = J replace [ ] by &:-p (f,,_ I - fi,,) 1 Gi61. 

The tridiagonal matrix to sweep in the Y direction for each X to determine the At, is 

where the coefficients are 

1 

AiJ = 

c,, = 

NAT 
- 2<j<J-I; A,,=-------i_ 

AY-(AY+ +AY--) CAY-1 

NAZ Nhz 
4.1 = NGy+)‘; &= I+(L\Y-)~ 

NAT 
B,,,=l+-AY~ 2<jCJ-1 

NAr NAr 
m; C, = - Ay+(Ay+ +Aym) 2 Gj G J-1, 

SOLUTION DE DIFFERENCES FINIES POUR LE REFROIDISSEMENT RADIATIF 
VARIABLE DUN DOMAINE CARRE CONDUCTEUR ET SEMI-TRANSPARENT 

R&mm&On obtient les solutions transitoires pour un domaine carre de mattriau conducteur semi- 
transparent refroidi par rayonnement thermique. Ce domaine est place darts le vide et l’energie est disperste 
seulement par rayonnement a partir des limites du domaine. L’effet de la conduction est de repartir 
partiellement la distribution interne de temperature. Lorsque l’epaisseur optique du domaine augmcnte, 
les gradients de temperature croissent p&s des frontieres et des coins, a moins que la conduction thermique 
soit grande. La procedure de resolution peut fournir des distributions de tem~rature precise dans ces 
regions pour kiter une erreur dans le calcul des pertes par rayonnement. Une integration gaussienne 
numtrique bidimensionnelle est utiliske pour obtenir le terme de source radiative locale. Une proctdure 
aux differences finks avec increments variables d’espace et de temps est utilisee pour resoudre I’iquation 
d’energie transitoire. Un espacement variable est utilise pour concentrer les points de la grille dam les 

regions a grands gradients de temperature. 
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BERECHNUNG DER TRANSIENTEN STRAHLUNGSKUHLUNG EINES 
WARMELEITENDEN HALBTRANSPARENTEN QUADRATISCHEN GEBIETS 

MITTELS FINITER DTFFERENZEN 

Zusammenfassung-Die Strahlungskiihlung eines quadratischen Gebiets aus warmeleitendem halbstrans- 
parentem Material wurde fur instationare Bedingungen berechnet. Das Gebiet befindet sich in einer 
evakuierten Umgebung, so daR Energie ausschliel3lich durch Strahlung aus dem Medium durch seine 
Berandung hindurch transportiert werden kann. Die Wlrmeleitung fiihrt wihrend des transienten Vorgangs 
zu einem teilweisen Ausgleich der Temperaturverteilung im Inneren. Trotz der starken Warmeleitung 
werden die Temperaturgradienten mit wachsender optischer Dickc des Gebiets an dessen Begrenzungen 
und in Ecken grBBer. Das Losungsverfahren mul3 in der Lage sein, genaue Temperaturverteilungen in 
diesen Gebieten zu liefern. urn Fehler im berechneten Strahlungsverlust zu vermeiden. Die ottlichen 
Strahlungsquellterme wurden mit Hilfe einer zweidimensionalen numerischen Integration nach Gauss 
ermittelt. Die instationire Energiegleichung wird mittels eines Finite-Differenzen-Verfahrens mit variabler 
Orts- und Zeitschrittweite gel&t. Die variable Schrittweite ist eriorderlich. urn in Bereichen mit starken 

Temperaturgradienten Knotenpunkte konzentrieren zu kiinnen. 

PEIIIEHHE KOHEqHO-PA3HOCTHbIM METOAOM 3A&4%4 HECTAIJMOHAPHOI-0 
OXJIAX)JEHkiR M3JIY’JEHkiEM TEITJIOIIPOBOJI5IIIJE$i I-IOJIYIIP03PAr4HO~ 

KBAJJPATHOB OBJIACTki 

AtmoTaquw-IIonyqeHbl HecTaqsioHaptibre perueHua .nnn oxnamnewn KsanpaTHoir o6nacru Tennonpo- 
BOJUUI(erO nOJtynpO3pBYHOrO MaTepBBJa3aC'IeTTennOBOrO H3JQ"IeHH%O6JMCTb HaXOAHTCK B BaKyyMe, 

n03~0hfy 3HeprHn pacceweaercn TonbKo ssnyuemebs. 3+$e~T Tennonponomiocru np~ HenawoHap- 
HOM npOI&WZe CnOCO6CTByeT BbIpaBmiBaHHlO BHyTp‘ZHHerO paCnpeAeJIeHAH TeMnepaTyp. c pOCTOM 

OnTH'ieCKOfi TOJmUiHbI o6nacre TeMnepaTypHbIe rpaAHeHTb1 B03JIe rpBHHU U yrJIOB yBWWiifBalOTC~, 

ecnu TennonpoeonfiocTb Hesenma. Bo m6enmme norpeumocreii B pacwrax noTepb tia asnyreeue 
MeTomiKa pemeHun Aonxcria 06ecneweaTb ToyHoe 0npeneneHne pacnpeneneHHii TebfnepaTyp B nccne- 
AyeMbIX o6nacTnx.&uI HBXOXQeHBIInOICBJlbHOrO HCTOYHWKa H3JIy'IeHwn HCnOJIb3y‘ZTCK AByMepHOe WC- 

newoe raycconcKoe NHTerpupoBaHse. HecrauuoHapHoe ypaJmemie coxpaHemin meprmi pemaeTca 
KOHVIHO-pB3HOCTHblM MfFTOAOM C H3hieHIIIOIt@iMWCB npOCTpaHCTBeHHbIMH Ii BpeMeHHbIMU UlaraMH. c 

nenbro KOHTeH~al(HWTOYeK‘%TKHB o6nacrrx C 60JlbmHMH TeMnepaTypHbIMHrpaAHeHTaMHHCnOnb30- 

nancn nepehfeHm&mar. 


